

ICO4-PST Solenoid Valve Partial Stroke Testing System

Key Benefits

- High performance solenoid valve with integrated Partial Stroke Testing
- Hydraulic and pneumatic versions available
- > Up to 4.5Cv in pneumatic
- Compatible with valve closure times from 1.5 to 120 seconds
- > Compatible with QEVs and

POVs for very fast closing valves

- SIL 3 capable, always tests all final elements for best possible PFD
- PST operates final elements in identical manner to a shutdown
- Both remote (from DCS) and local (handheld device or control panel) operation

Technical Features

Medium:

Hydraulic and pneumatic – customer to specify and confirm compatibility **Operation:** Direct solenoid operated poppet valves **Mounting Position:** Solenoid vertical 0,8 Cv (11,5 Kv) ... 5.0 Cv (72.0 Kv) **Port Size:** 1/4 NPT, 1/2 NPT, G1/4, G1/2 or manifold version **Operating Pressure:** 0 ... 20 bar (0 ... 290 psi) 0 ... 50 bar (0 ... 725 psi) 0 ... 207 bar (0 ... 3002 psi) 0 ... 414 bar (0 ... 6004 psi)

Flow:

Temperature:

Media: -20 ... +90°C (-4 ... +194°F) Options to -60°C (-76°F) available on request. Ambient: See table on page 2

Air supply must be dry enough to avoid ice formation at temperatures below +2°C (+35°F)

Materials:

Valve body, trim, coil housing and top cover: stainless steel 1.4404 (316 L) Other trim and body materials available O-rings seats & seals: high NBR Other seal materials available on request

Warning

These products are intended for use in industrial compressed air systems only. Do not use these products where pressures and temperatures can exceed those listed under **»Technical features/data«.**

Before using these products with fluids other than those specified, for non-industrial applications, lifesupport systems or other applications not within published specifications, consult Thompson Valves Ltd. Through misuse, age, or malfunction, components used in fluid power systems can fail in various modes. The system designer is warned to consider the failure modes of all component parts used in fluid power systems and to provide adequate safeguards to prevent personal injury or damage to equipment in the event of such failure. System designers must provide a warning to end users in the system instructional manual if protection against a failure mode cannot be adequately provided. System designers and end users are cautioned to review specific warnings found in instruction sheets packed and shipped with these products. For further information please see Functional Safety Manual MI0560.

For further information please contact: imithompson.sales@imi-critical.com

Technical Data – Standard

Parameter			Pneumatic Hydroulic							
Circ					16.11	37.11	1//			
Size			94 ^a	= (0 +	72 ⁻	9/4°	74			
Configuration			3/2 5/2* 3/2 3/2 3/2							
Thread Type *			NPT, BSPP(G)							
Fluid Specification							;			
Cv		Cv	0.8 0.6		2.1	4.5	0.3			
Flow Rate		Kv	11.5	8.6	30	65	4.3			
		bar	20	12	12	10	300			
Maximum Operating Pres	sure	PSI	290	174	174	145	4350			
		°C	-40 +60	•		-40 +50	-20 +60			
Fluid Temperature		°F	-40 140		-40 122	-4 140				
Electrical Specification				·						
Power Consumption		6W	9W	9W	13W	8W				
Current Drain @ 24V			0.25A	0.38A	0.38A	0.52A	0.35A			
Available Voltages			24Vdc, 48Vdc, 110/115Vdc, 125Vdc, 120Vac							
Voltage	%		±12.5%							
Tolerance	@24Vdc		21 - 27V							
Trip Signal			De-energise to trip (DTT)							
Analogue Input			4-20mA pass-through with HART 7							
					1 1 1 1 1					
Physical Specification										
		kg	6.5	7.0	6.5	8.5	6.5			
VVeight		lb	14.3	15.4	14.3	18.7	14.3			
Ambient Working Temper	ature	°C	-40 +60			-40 +50	-20 +60			
Range		°F	-40 +140		-40 +122	-4 +140				

* Contact Maxseal engineering for details regarding valve manifolds and NAMUR interfaces

Solenoid Valve Specification

Туре	Direct operated poppet				
Operation	Auto, Local Manual Reset, Remote Manual Reset				
Redundancy Architectures	1001, 2002 (SIL2), 1002, 2003 (SIL 3)				
Mounting Orientation	Vertical or horizontal				
All Exposed Metalwork	Stainless steel 1.4404 (316L)				
Conduit Connection	1/2" NPT or M20 x 1,5				
Insulation Class	Class H				
Ingress Protection EN 60529	IP66				
Safety Function Trip Position	Normally Open (NO), Normally Closed (NC)				
Safety Function Trip Signal	De-energise to trip (DTT)				

Certifications

Hazardous Area						
Model Certification Code		ICO4E				
ATEX		Ex db IIC T4/T6				
T6 Ambient Temprature Limit		+43°C, +109°F				
Additional Approvals		InMetro, TR CU, Class 1 Div 2 FM3600 / FM3615 / CSA 22.2				
Functional Safety						
SIL Capability		SIL 2 with HFT=0, SIL 3 with HFT=1				
Operational Mode		Low demand mode				
Device Type		Туре А				
Hardware Analysis Method		Prior Use : Route 2H				
Data Sample		> 50-years, 200,000 valves & 2 billion hours				
Confidence Interval		90%				
Certifying Body		SIRA				
Trip Signal		De-energise to trip (DTT)				
	λDD	5				
Failure Rates (Failures/109 Hrs)	λDU	0				
(λS	31				

Fluid Requirements

Pneumatic	nstrument air supply must be dry enough 10 avoid ice formation below +2°C (+35°F)				
Hydraulic	Suitable for media conforming to NAS 1638 Class 6/ ISO 4406 18/16/13 and Devlon compatible				
Seats & Seals †					
Pneumatic	NBR/FMP/ FKM				
Hydraulic	Seat - Devlon O-Rings - NBR/FMP/ FKM				

* Others available on request

Option Selector

			YV★★★ ≯	★ ★:	★★7 	★S★ ∣				
Fluid Type	Max Pressure	Substitute					\longrightarrow	Additional Certif	Susbtitute	
Pneumatic	10Bar *	1						InMetro		-INM
Hydraulic	ydraulic 300bar 7						\longrightarrow	Voltage		Susbtitute
Port Config		Susbtitute						24Vdc		в
3/2		3						48/50Vdc		с
5/2 Pneu ¼" †		5						125Vdc		E
Operation		Susbtitute] ←					110Vac		J
Auto Reset		А						110/115Vdc		R
Local manual reset		Р						120Vac		т
Remote manual reset		J					\longrightarrow	Conduit	IS Barrier	Substitute
Port Thread Type		Susbtitute	<					M20 x 1.5mm	No	1
G (BSPP)		E						1/2" NPT	No	2
NPT		А						M20 x 1.5mm	Yes	3
RVM 1⁄4" †		KF						1/2" NPT	Yes	4
Port Size	Cv	Susbtitute	<				、 、	C. IN Local	Substitute §	
1⁄4" Hyd	0.3 Cv	1						Seal Material	Pneumatic	Hydraulic *
1⁄4" Pneu	0.8 Cv	1						Nitrile	н	N
½" Pne∪	2.1 Cv	3						Viton	V	W
¾" Pneu †	4.5 Cv	5								
RVM 1⁄4" †	0.8 Cv									

* For ¼" at 20bar substitute "2"

* Consult Maxseal engineering for configuration advice

Other seals available on request

§ Hydraulic fluid must be Devlon compatible

Typical Schematics

Dimensions

Dimensions in mm Projection/First angle

		Dimensions (mn	n)			Port Function *				
Valve Type		A	в	с	D	E	1	2	3	Weight (kg) †
Pneumatic	1⁄4"	246	21	32	44	51	In	Out	Ex	7.3
	1⁄2″	273	18	42	64	64	Ex	Out	In	7.3
	3/4"	292	26	57	86	74	Ex	Out	In	9.3
1/4" Hydraulic		254	25	36	48	51	In	Out	Ex	7.3

* In = Inlet, Out = Outlet, Ex = Exhaust

Е

* Include IS Barrier

Options

Local Control Panel

A Local Control Panel (LCP) can be used to initiate a PST and report the result. This can be configured to match the customers requirements and include functions such as:

Functions:

- > Perform ESD
- Local ESD
- > Manual reset
- > Test lamps
- > Perform solenoid valve test

IS Barrier

The ICO4-PST has an optional IS Barrier that provides an Exib connection for HART that can be opened for use without the need for a hot permit. This facilitates easy use of handheld devices such as the 457 communicator, Trex or suitable tablet computers.

Manual reset

A manual reset option provides a facility to manually reset the solenoid valve after an ESD event. After reenergising the ESD signal the operator must press the button to move the valve to the open position. This button can be incorporated into the valve or used in a local junction box.

Indication:

- > Test pass/fail
- > Process valve open/closed
- > Ready to reset solenoid valve

Redundant Valve Manifolds

IMI manufacture Redundant Valve Manifolds that can incorporate the ICO4-PST. These can be configured for 1001, 1002, 2002 & 2003 solenoid valve redundant architectures. In addition, this can simplify the supply chain, warranty, and certification and greatly reduce the requirements for installation, commissioning, and servicing. The following components can be included in the manifolds:

- > ICO4-PST
- > Flow control
- > Solenoid valves
- > Filter regulator
- > Check valves
- Pressure relief valve

Advanced Condition Monitoring

As the ICO4-PST captures data for pressure, position, and time, advanced valve condition monitoring can be performed by exporting this data in to custom designed tools. This permits the monitoring of valve torque parameters, such as Break To Close, over a period of time or against other identical valves. This can greatly help with planned and/or preventative maintenance thus reducing downtime caused by unexpected ESD valve failures.

IMI Thompson Valves 17 Balena Close, Creekmoor, Poole BH17 7EF - United Kingdom imithompson.sales@imi-critical.com

imi-critical.com

